Rapid Floodplain Modeling

Implementing the Results of the Statewide Iowa Floodplain Modeling Project

Traci Owens, E.I., CFM

Hydraulics Engineer

USACE - Omaha District

Traci.M.Owens@USACE.army.mil

08 March 2018

US Army Corps of Engineers
BUILDING STRONG®

Mitigation = Risk Informed Decisions

A Need for New/Updated Mapping

- •The Omaha District/IFC developed automated scripts that:
 - •Sets up the HEC-RAS (Hydraulic Model) data
 - Manages the data (such as the flow and geometry data)
 - •QA/QC tool 100% manual review is not needed

- Iowa Floodplain Mapping Project
 - USACE Section 22 for 8 HUC8 Watersheds
 - •55 HUC8 Watersheds total
 - •Goal was to develop data applicable for a Zone A approximate study to be incorporated into the NFIP
- •Through the application of statewide LiDAR data and GIS automation tools, HEC-RAS models are used to develop this data.
- •Automated methods have been developed to assist hydraulic modelers in verifying that engineering products meet specific requirements.

Study Area

Coordinated Needs Management System (CNMS)

A FEMA initiative to update the way FEMA organizes, stores, and analyzes flood hazard mapping information for communities.

- Studied Stream Lines
- Unmapped Stream Lines

Large Data Set – Entire Watershed/HUC

Hydraulics Prep Tool (Python Scripts) Hydraulics Q Pts.dbf 1mdem rchr La_Crosse_River_orig.mxd du: 🔳 Q_Pts.prj e hillshade Model_Polygon.dbf O Pts.sbn Hydraulics Model_Polygon.prj Q Pts.sbx St 📗 info Model_Polygon.sbn Q Pts.shp 1mDEM_rchR.aux.xml Model_Polygon.sbx Q Pts.shp.xml 1mDEM_rchR.ovr Model_Polygon.shp Q Pts.shx flt 1mdem rchr.flt Streamline_La_Crosse_River.dbf Model_Polygon.shp.xml flt 1mdem rchr.hdr Streamline_La_Crosse_River.prj Model_Polygon.shx flt 1mDEM_rchR.prj Streamline La Crosse River.sbn Streamline_La_Crosse_River.dbf La_Crosse_River.mdb Streamline La Crosse River.sbx Streamline_La_Crosse_River.prj Q La Crosse River.mxd de Streamline_La_Crosse_River.shp Streamline La Crosse River.sbn Q La_Crosse_River_orig.mxd Streamline La Crosse River.shp.xml ha Streamline La Crosse River.sbx log Streamline La Crosse River.shx Model Polygon.dbf Streamline_La_Crosse_River.shp XSCutlines.dbf t Model_Polygon.prj Streamline_La_Crosse_River.shp.xml XSCutlines.prj ٦e Model_Polygon.sbn Streamline_La_Crosse_River.shx XSCutlines.sbn 3€ re Model_Polygon.sbx XSCutlines.dbf XSCutlines.sbx Model_Polygon.shp XSCutlines.prj XSCutlines.shp Model_Polygon.shp.xml XSCutlines.shp.xml XSCutlines.sbn Model_Polygon.shx XSCutlines.shx XSCutlines.sbx ile XSCutlines.shp XSCutlines.shp.xml XSCutlines.shx **BUILDING STRONG®**

Individual Stream

Heisler Creek Example Video

Arc2RAS

- Creates the HEC-RAS flow file
 - ► Imports flow values from the discharge point locations in GIS
- Creates a backup text file for comparison during the QAQC tool check

QA/QC

No easily definable criteria for Zone A mapping, additional customer identified criteria applied

USACE - Omaha District QA/QC automated tool checks:

- Completeness Review:
 - •Is the project title correct?
 - •Is there only one plan, geometry and flow file?
 - •Are the plan, geometry, flow titles correct?
- •Geometry Review:
 - Model units
 - •Are the reach lengths correct?
 - •Is the cross section stationing in line with the reach lengths?
 - •Are the cross sections long enough to include the flooded areas?
 - •Are the overbank Manning's values correct?
 - •Are the channel Manning's values correct?
- •Flow Review:
 - •Does the model contain each profile
 - •Are the discharges for each profile correct?
 - •Do the flows increase in the downstream direction?
 - •Is the slope acceptable for boundary conditions-normal depth?
- Results Review:
 - •Do any of the profiles cross or contain dips?

Hydraulics Completion

- USACE Omaha District Completed Modeling for 8 HUC8 Watersheds
 - 2,000 individual streams
 - Calibrations using USGS measured field data
 - Re-Delineations on detailed study (FEMA Mapped Zone AE) areas

Project Stages

- · Hydrology and Hydraulics Done
- Re-Delineations Incorporated (if any)
- New Studies Incorporated (if any)
- FPM Manual Cleanup/Review

Stage One: Initial Mapping Complete

- Phone Kick-off Meeting with officials/stakeholders
- · DFHP Meeting with officials/stakeholders
- Distribute Products (Shapefiles, Depth Grids, Models, CSLF) to stakeholders
- Deliver data on www.lowafloodmaps.org website
- Elicit Feedback from officials/stakeholders

Stage Two:
Draft FPM Products Delivered
(Public Official Ready)

- Incorporate new development since LiDAR
- Incorporate new information from community
- Review to assess impact of new information
- Follow up with officials regarding results
- Incorporate changes into FPM/Hydraulic Submittals if warranted
- Incorporate changes into other products (Depth Grids, CSLF)

Stage Three:

Incorporate Changes to FPM Products

(Public Ready After Complete)

- Base Map preparation (roads, panels, general structures, sub-basins) – IFC GIS Staff
- Preliminary Map Preparation before preliminary submittal to FEMA – DNR Subcontractor
- · Incorporate last minute changes
- Post Preliminary Map Production DNR Sub
- Meetings (Engineering Review/CCO) DNR/FEMA/Sub
- Letter of Final Determination DNR/FEMA/Sub
- COMPLETE!!!

Stage Four: DFIRM

Rock Rapids, Iowa

Non-Regulatory Floodplain Boundaries

Non-Regulatory Floodplain Boundaries

Depth Grids – A Deeper Look at Inundation

Scour Targeting Maps

Continued Mapping Efforts: Post Project

- Some communities currently mapped in detailed study areas (Zone AE) are not being updated through this study
 - Re-delineation models created
 - Current Zone A models and terrain available to update the existing mapped Zone AE Detailed Study areas
 - Need structure survey data
 - Sources available to upgrade current Zone A mapping to Zone AE mapping for communities in need of a detailed study flood zone

What Did We Accomplish?

- Successfully updated the existing flood risks within the state of lowa
 - ▶ People have the resources to be aware of their risks
 - ► More residents located in the 100-year floodplain boundary
 - Newly mapped residents inside the boundary will have to purchase flood insurance per NFIP requirements
 - Is this a good thing?
- How can we help these communities after providing them this information?

Questions?

Traci Owens
US Army Corps of Engineers – Omaha District
Flood Risk and Floodplain Management
402-995-2325
Traci.M.Owens@USACE.army.mil

Special Thanks:

Michelle Schultz – USACE Programmer and GIS Specialist
Tony Krause – USACE Flood Risk and Floodplain Management Section
lowa Flood Center – Technical Partner
lowa Department of Natural Resources – Project Sponsor

